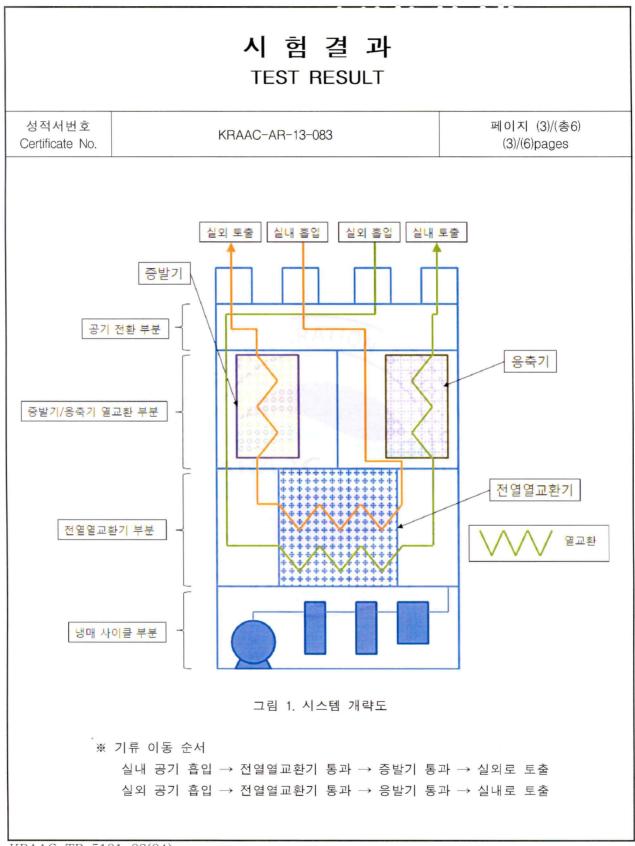
개발 또는 기술이전 제안서

용인예술과학대학교 건축소방설비과 장영근 교수

1. 기술 개요

냉동기(시스템에어컨)와 환기유닛을 일체화하여 냉동기 1대로 냉매의 역사이클 운전 없이 "고정밀 기류전환장치"와 "바이패스댐퍼"로 실내(급기/환기) 및 외기(배기/외기) 공기를 기류전환시켜 냉방(또는 난방)과 동시에 외기도입 환기가 가능하고, 봄가을 외기 냉방이 가능하며, 전열교환 환기가 가능한 완전공조기 특허기술(특허 제10-0742527호, 특허 제10-1565249)로 기류를 전환시킨다는 "에어시프터(Air Shifter)"를 줄여서 "에어시터(Air Shiter)"라고 상표출원(출원번호 40-2013-0004170)한 기술임

- 환기덕트, 냉매관 2개 공사 필요
- 천장에 별도 실내기 공사 필요
- 별도 냉매관 공사 필요
- 별도 환기유닛 설치 필요


[그림 1] 종래의 시스템에어컨과 환기유닛 2개장치 설치 구성도

- 환기덕트 1개만 필요
- 냉매관, 실내기 불필요
- 냉매관 공사 불필요
- 별도 환기유닛 설치 불필요

[그림 2] 에어시터 1개장치 설치 구성도

2. 기술 개발 현황

(1) 1차 시작품 공인기관 난방성능시험 실시

KRAAC-TP-5101-02(04)

시 험 결 과

TEST RESULT

성적서번호 Certificate No.	KRAAC-AR-13-083	페이지 (4)/(총6) (4)/(6)pages
Certificate No.		(4)/(6)pages


4. 시험 결과

표 3 시험 결과

측정 항목		단위	시험결과
가열열량	가열열량 ¹⁾	W	4 549
	실내 토출 풍량	m³/min	5.82
	실외 흡입 건구온도	${\mathbb C}$	0.00
	실외 흡입 습구온도	${\mathbb C}$	_
	실내 토출 건구온도	$^{\circ}\mathbb{C}$	41.09
	실내 토출 습구온도	$^{\circ}$	19.81
냉각열량	냉각열량 ²⁾	W	2 765
	실외 토출 풍량	m³/min	6.22
	실내 흡입 건구온도	${\mathbb C}$	19.98
	실내 흡입 습구온도	$^{\circ}\mathbb{C}$	15.02
	실외 토출 건구온도	$^{\circ}$	9.96
	실외 토출 습구온도	$^{\circ}$	5.96
소비전력		W	2 085
COP ³⁾		W/W	2.18

¹⁾ 실외에서 실내로 이동한 공기가 이동되면서 얻은 열량으로 1 사이클 평균온도와 풍량으로 계산한 값임.

[※] 공조기 내부에서 실외 흡입 공기와 실내 토출 공기와의 누설은 고려하지 않음.

KRAAC-TP-5101-02(04)

²⁾ 실내에서 실외로 이동한 공기가 이동되면서 빼앗긴 열량으로 1 사이클 평균온도와 풍량으로 계산한 값임.

³⁾ 가열열량과 소비전력의 비

시 험 결 과

TEST RESULT

성적서번호 Certificate No.

KRAAC-AR-13-083

페이지 (5)/(총6) (5)/(6)pages

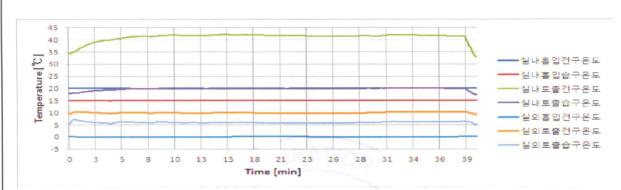


그림 2. 제상운전을 포함한 1cycle의 소비전력 그래프

5. 시험품 사진

그림 3. 제품 외관 사진

KRAAC-TP-5101-02(04)

(2) 2차 시작품 공인기관 냉방성능시험 실시

시 험 결 과 TEST RESULT

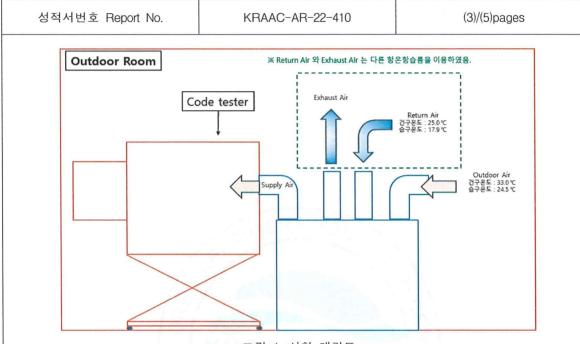


그림 1. 시험 개략도

4. 시험 결과

표 3. 시험결과

	측정 항목	단위	시험결과	
냉방시험	냉방	능력*	W	3 520
	소비전력		W	1 916
	Supply Air	풍량	m³/min	9.45
		건구온도	${\mathbb C}$	23.16
		습구온도	\mathbb{C}	19.44
	Oudoor Air	건구온도	${\mathbb C}$	32.94
		습구온도	${\mathbb C}$	24.52
	Return Air	건구온도	${\mathbb C}$	25.32
		습구온도	\mathbb{C}	17.85
	Exhaust Air	건구온도	${\mathbb C}$	48.7
	이상없이 작동 함			

- * 냉방능력은 OA(Oudoor Air)와 SA(Supply Air)의 공기엔탈피차와 SA풍량을 통해 산출함.
- ** 기류 전환 작동은 냉/난방 운전시 전동밸브의 작동 및 기류변경을 육안으로 확인함
- ※ 위 시험결과는 시료 내부의 공기 누설은 고려하지 않았으며, 누설 여부에 따라 성능은 다를 수 있음.

시 험 결 과 TEST RESULT

성적서번호 Report No.

KRAAC-AR-22-410

(4)/(5)pages

5. 시험 사진

그림 2. 시험 시료

그림 3. 시험설치(실외 측)

그림 4. 시험설치(실내 측)

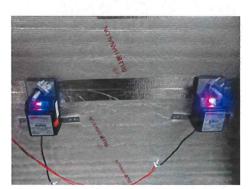


그림 5. 기류 전환 확인(냉방 환기 운전)

RA-P14-02(00)

시 험 결 과 TEST RESULT

성적서번호 Report No.

KRAAC-AR-22-410

(5)/(5)pages

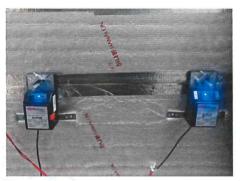
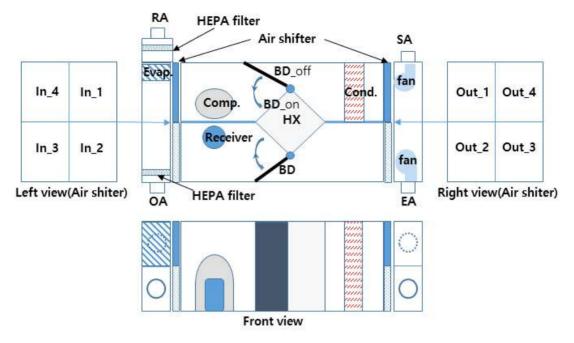
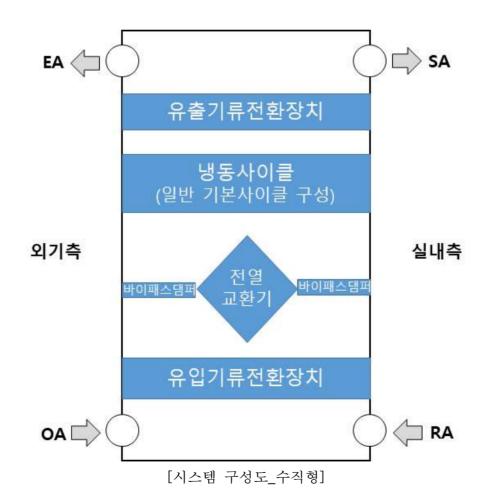



그림 6. 기류 전환 확인(난방 환기 운전)


- 끝 -

RA-P14-02(00)

3. 시스템 구성도

[시스템 구성도_수평형]

4. 기술 적용 분야

냉방, 난방, 냉방환기, 난방환기, 외기냉방, 환기 6개 운전모드가 가능한 시스템

- (1) 창문형 에어컨 : 소형 개별공조기
 - 기존 창문형에어컨에서 불가능했던 외기도입환기와 동시에 냉난방이 가능한 에어컨
 - 봄가을 냉동기 운전 없이 시원한 외기만으로 냉방이 가능한 외기냉방 에어컨
 - 전열교환 환기가 가능한 폐열회수 환기장치
 - 아파트, 사무실 등의 소형 공간에 개별시스템으로 적용
- (2) 시스템에어컨과 환기유닛 일체형 공조장치 : 중대형 완전공조기
 - 기존 시스템에어컨과 환기장치 2개를 1개의 시스템으로 일체화한 공조기
 - 보일러 없이 냉난방이 가능한 공조기
 - 아파트형 공장, 사무실, 중대형 빌딩 등 중대형 건물 중앙시스템으로 적용
- (2) 복합환기장치 : 중소형 개별공조기
 - 냉방(또는 난방)과 동시에 환기가 가능한 에어컨 또는 환기장치
 - 소음이 적고 깨끗한 공기를 많이 필요로 하는 공간에 적용
 - 학교, 스터디카페, 독서실 등의 중소형 시스템으로 적용